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Figure: 100 years’ winter in Poland in 1978.
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Figure: Example of the Snow Team Problem.
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Figure: Example of the Snow Team Problem.
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Introduction

Let D = (V,A,F ,B) be a vertex-weighted digraph of order n and size m,
with two vertex-weight functions F : V → {0, 1} and B : V → N, such that
its underlying graph is connected.
We denote:

F = F−1(1) as the locations of facilities, called terminals;

B = B−1(N+) as snow bases, i.e. the vertices where a (positive)
number of snow ploughs is placed;

kB =
∑

v∈V B(v) as the total number of snow ploughs placed in the
digraph.
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The Snow Team Problem

The Snow Team problem (ST)

Do there exist kB directed walks in D, with exactly B(v)
starting points at each vertex v ∈ V, whose edges induce a
subgraph H of D such that all vertices in F−1(1) belong to
one connected component of the underlying graph of H?

D. Urbańska (PG) Clearing Directed Subgraphs by Mobile Agents FCT 2017 6 / 32



The Snow Team Problem

Motivation

ACT problem [Levcopoulos et al. (2014)]

variant of the path cover problem [Beerenwinkel et al. (2015),
J. Kováĉ (2013), Ntafos and Hakimi (1979)]

connected graph searching problems
[Best et al. (2016), Dereniowski (2012)]

directed Steiner Tree problem
[Chitnis et al. (2014), Suchý (2016), Watel et al. (2016)].

Our Results

ST problem is strongly NP-complete

ST problem is FPT

min-ST, max-ST, STU problems are FPT

STU problem is strongly NP-complete

ACT problem is NP-complete
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NP-completeness of ST

We prove that the ST problem is NP-complete by describing a
polynomial-time reduction from the Set Cover problem.

Theorem

The ST problem is strongly NP-complete even for directed acyclic graphs
D = (V,A,F ,B) with F−1(1) = V and B(v) = 1 if v is a source vertex in
D and B(v) = 0 otherwise.
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Tree-like Solution

Definition (Tree-like solution)

Let W be a set of walks (if any) that constitute a positive answer to the
ST problem for a given instance D = (V,A,F ,B). We say that W is
tree-like if all walks in W are arc-distinct and the underlying graph of their
union includes a Steiner tree for F ∪ B. Notice that if W is tree-like, then
all walks in W are just (simple) paths.
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Tree-like Solution

v1 v2

v3

v4 v5

1 1

(a) B = {v1, v2}, B(v1) =
B(v2) = 1.

v1 v2

v3

v4 v5

2

(b) B = {v1}, B(v1) = 2.

Figure: F = {v4, v5}, orange dots denote the snow team bases and green dots
denote the terminals. There exists a tree-like set of walks on (a), but not on (b).
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Lemma About Transitive Closure

Lemma

A (restricted) instance D = (V,A,F ,B) admits a positive answer to the
ST problem if and only if the transitive closure TC(D) = (V,A′,F ,B) of
D, with the same vertex-weight functions F and B, admits a positive
answer to the ST problem with a tree-like set of walks whose underlying
graph is of order at most 2|F ∪ B| − 1.
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Lemma About Transitive Closure

v1 v2

v3

v4 v5

2

(a) D = (V,A,F ,B).

v1 v2

v3

v4 v5

2

(b) TC(D) = (V,A′,F ,B).

Figure: F = {v4, v5}, B = {v1}, B(v1) = 2. Solution in (b) has to be tree-like of
order at most 2|F ∪ B| − 1 = 5.
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The Tree Pattern Embedding Problem

solving ST problem for D = (V,A,F ,B)
m

searching through tree-like solutions in TC (D) with at most 2|F ∪ B| − 1
vertices (tree-like-restricted ST)

m
solving the problem if TC (D) has a subtree T = (VT ,AT ) of order at
most 2|F ∪ B| − 1 such that F ∪ B ⊆ VT and all edges of T can be

traversed by at most kB snow ploughs following arc-distinct paths starting
at vertices in B
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The Tree Pattern Embedding Problem - Example

w1 w2

w3

w4
w5

w6

3

(a) D = (V,A,F ,B).

u1 u2

u3

u4

u5

3

(b) T = (V ,A, L).

Figure: F = {w4,w6} and B = {w1}, B(w1) = 3; L−1(0) = {u2, u3, u4, u5}.

Only one solution: u1 → w1, u2 → w2, u3 → w3, u4 → w4, u5 → w6.

We say that T has an S-embedding in D, where S = F ∪ B.
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The Tree Pattern Embedding Problem

Let D = (V,A,F ,B) be a directed graph of order n and size m, with two
vertex-weight functions F : V → {0, 1} and B : V → N and let
T = (V ,A, L) be a directed vertex-weighted tree of order t, with a
vertex-weight function L : V → N.

The Tree Pattern Embedding problem (TPE)

Does D have a subgraph H = (VH ,AH) isomorphic to T
such that F−1(1) ∪ B−1(N+) ⊆ VH and L(v) ≤ B(h(v)) for
any vertex v of T , where h is an isomorphism of T and H?
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The TPE Problem: Polynomial Construction

monomial - a polynomial that is just a product of variables
multilinear monomial - a monomial in which each variable occurs at
most once

Fact ([Koutis and Williams (2016)])

Let P(x1, . . . , xn, z) be a polynomial represented by a monotone arithmetic
circuit of size s(n). There is a randomized algorithm that for the input P
runs in O∗(2kt2s(n)) time and outputs “YES” with high probability if
there is a monomial of the form z tQ(x1, . . . , xn), where Q(x1, . . . , xn) is a
multilinear monomial of degree at most k, in the sum-product expansion
of P, and always outputs “NO” if there is no such monomial
z tQ(x1, . . . , xn) in the expansion.
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The TPE Problem: Polynomial Construction

Input: digraph D = (V,A,F ,B) and directed tree T = (V ,A, L).
Idea: construct an appropriate polynomial Q(X , z) such that Q(X , z)
contains a monomial of the form z |S|b(X ), where b(X ) is a multilinear
polynomial with exactly t variables in X and S = F ∪ B, if and only if the
t-vertex tree T has an S-embedding in D.
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The TPE Problem: Example

w1 w2

w3

w4
w5

w6

3

F: D = (V,A,F ,B)

u1 = r u2

u3

u4

u5

F: T1 = (V1,A1, L1)

F = {w4,w6},
B = {w1}, B(w1) = 3 and L−1

1 (0) = V1.
We calculate polynomial Q(X ,T1) obtaining final
result:

Q(X ,T1) = z2xw1xw3xw6(zxw1 +xw2)(zxw4 +xw5)+

+zxw2xw3xw6(zxw1 + xw2)(zxw4 + xw5) =

= . . . + 2z3xw1xw2xw3xw4xw6 .

It contains a monomial of the form z |S|b(X ),
which reflects that T1 can be embedded into D.
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The TPE Problem: Example

w1 w2

w3

w4
w5

w6

3

F: D = (V,A,F ,B)

u1 = r u2

u3

u4
u5

u6

F: T2 = (V2,A2, L2)

F = {w4,w6},
B = {w1}, B(w1) = 3 and L−1

2 (0) = V2.
We calculate polynomial Q(X ,T2) obtaining final
result:

Q(X ,T2) = z2xw1xw3xw6(zxw1+xw2)2(zxw4+xw5)+

+zxw2xw3xw6(zxw1 + xw2)2(zxw4 + xw5).

It does not
contain a monomial of the form z |S|b(X ), which
reflects that T2 can not be embedded into D.
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The TPE Problem: Main Theorem

Lemma

The polynomial Q(X , z) contains a monomial of the form z |S|b(X ), where
b(X ) is a multilinear polynomial with exactly t variables in X , if and only
if the t-vertex tree T has an S-embedding into D.

Theorem

There is a randomized algorithm that solves the TPE problem in
O∗(2t) time.
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The ST Problem is FPT

Theorem

There is a randomized algorithm that solves the tree-like-restricted ST
problem for D = (V,A,F ,B) in O∗(144|S|) time, where S = F ∪ B.

Proof.

There is O(9|S|) undirected trees of order t [Otter (1948)], where
|S| ≤ t ≤ 2|S| − 1. For each such a t-vertex candidate tree, we enumerate
all orientations of its edges, in order to obtain a directed tree; there are
2t−1 such orientations. Therefore, we have O(36|S|) candidates for a
directed oriented tree T of order t, where |S| ≤ t ≤ 2|S| − 1.
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The ST Problem is FPT

Proof (Cont.).

For each candidate T = (V ,A), we establish in O(t) time function L,
which determines the number of (at least) needed snow ploughs at every
vertex in order to traverse all arcs of T , in an arc-disjoint manner, i.e., for
every vertex v is equal to max{0, degout(v)− degin(v)}.
We then solve the TPE problem with the instance D and T = (V ,A, L) in
O∗(2t) time by Theorem 6.
As already observed, if T admits a positive answer to the TPE problem for
D, then D admits a positive answer to the tree-like-restricted All-ST
problem. Therefore, by deciding the TPE problem for each of O(36|S|)
candidates, taking into account the independence of any two tests, we
obtain a randomized algorithm for the restricted ST problem with a
running time O∗(144|S|).
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The ST problem is FPT

Corollary

The ST problem admits a fixed-parameter algorithm with respect to the
total number l of facilities and snow team bases, running in 2O(l) · poly(n)
time, where n is the order of the input graph.
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The min-ST Problem

The Minimal Snow Team problem (ST)

For a given input n-vertex digraph D = (V,A,F ,B) what is
the minimum number of snow ploughs among those available
at snow team bases in B = B−1(N+) that admits a positive
answer to the (original) Snow Team problem in D?

Corollary

The min-ST problem admits a fixed-parameter algorithm with respect to
the total number l of facilities and snow team bases, running in
2O(l) · poly(n) time, where n is the order of the input graph.
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The max-ST Problem

The Maximal Snow Team problem (ST)

For a given input n-vertex digraph D = (V,A,F ,B) what is
the maximum number of facilities in F−1(1) that can be
re-connected by snow ploughs located with respect to the
plough-quantity function B?

Corollary

The max-ST problem admits a fixed-parameter algorithm with respect to
the total number l of facilities and snow team bases, running in
2O(l) · poly(n) time, where n is the order of the input graph.
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The STU Problem

The Snow Team problem with Unspecified snow team bases (STU)

Given a weight function F : V → {0, 1} and an integer
k ≥ 1, do there exist k directed walks in a digraph
D = (V,A) whose edges induce a subgraph H of D such
that the set F−1(1) is a subset of the vertex set of H and
the underlying graph of H is connected?

Corollary

The STU problem admits a fixed-parameter algorithm with respect to
the number l of facilities and the number k of snow ploughs, running in
2O(k+l) · poly(n) time, where n is the order of the input graph.
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NP-completeness

Corollary

The STU problem is strongly NP-complete even for directed acyclic graphs
D = (V,A,F ) with F−1(1) = V and k equals the number of source
vertices in D.

Corollary

The ACT [Levcopoulos et al. (2014)] problem is NP-complete.
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The End

Thank you for your attention!
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